
1 Short version as contributed to the international conference "Innovations for an e-Society.

Challenges for Technology Assessment", held at Berlin, Germany, October 17-19, 2001. A full

length version is available on the internet via http://ig.cs.tu-berlin.de/.

1

"Software Patents" - IT-Security at Stake?

Robert A. Gehring, TU Berlin (rag@cs.tu-berlin.de)

Short abstract
This paper in short1 presents the thesis that insecurity of software is due to

interaction of technological and legal shortcomings, fostered by economic

rationality. Ineffective liability laws further the distribution of unreliable and

insecure software. Copyright protection for software hinders the quality

improvement. Patent protection encourages the use of proprietary instead of

standard technology. Open source development is proposed as a starting point for a

risk management strategy to improve the situation. Existing patent laws need

therefore be modified to include a "source code privilege".

Introduction

New legislative measures are regularly complemented by technical measures

developed by hardware and software producers to enhance the safety of the

intellectual property of their respective owners as well as to enable new business

models such as pair-per-use. To the technical measures themselves legal

protection is given by corresponding accommodated laws, often brought about by

private law making procedures: «[T]he tradition in copyright legislation involves

getting a bunch of copyright lawyers to sit at a bargaining table and talk with one

another [...]» (Litman 2001: 31)

The problem of how the security of information technology in general is affected

by laws and technical measures is somewhat out of focus, at least when

considering the political and legal process that lead to the new legislation.

Lobbyists of the right holders put heavy pressure on the politicians to enact laws

2

to protect their commercial interests. As the topic of security is approached, the

right holders worry about the safety of their respective intellectual property assets

but actually don’t care much about the security of the underlying information

infrastructure.

Technical reasons for insecure software

A software product development starts with a more or less detailed description of

the tasks the program has to do. Such a description is derived from a systems

analysis of the environment where the software is to be deployed. The functional

specification presents the building plan for the software.

In addition the input/output-relation of every functional part of the program

should be described in order to derive sufficient test instructions thereof.

Measured by real world conditions, a functional specification is sometimes

incomplete with respect to functional requirements. And it is nearly always

incomplete when it comes to security considerations: «[M]odern systems have so

many components and connectionssome of them not even known by the

systems’ designers, implementers, or usersthat insecurities always remain.»

(Schneier 2000: xii) No serious programmer would claim that software is secure

because of it is tested to be correct:

«The developers are so in tune with what it should do, they cannot see what it

might be able to do.» (Pipkin 2000: 75)

Besides the unavoidable blind spots in the functional specification, there is

another problem in the process of writing software: software is designed and

written by humans. And as with every writing human beings are involved in,

mistakes are made and need to be found and fixed. It is a limitation in the

development process owed to the imperfect human mind.

Not all errors can be found through testing. Thusin a faulty reactionthe

testing procedure can only show the presence of errors in the program. But it

3

cannot show the absence of errors.(Floyd 1997: 664; Kaner 1997) This is an

unavoidable technical limitation of the testing process.

Economic reasons for insecure software

Above all, proprietary software is a product for a market. Cost-benefit analysis are

an integral part of the development process. If the expected costs of liability in

sum are lower than the expected costs of a more complete testing and debugging

process, to deliver an unsafe product will be preferred by the software producer.

Network externalities have the greatest influence on the behavior of software

producers.(Shapiro/Varian 1999) A software distributor has to bear in mind that

software as a good applied in virtual networking environments is affected by

positive feedback effects: The more customers use the same software product the

greater is the value of the software to the individual user.

Positive feedback works to the advantage of the largest supplier. Regarding the

market, positive feedback cycles often end in a "winner-take-all" situation.

(Shapiro/Varian 1999) Incentives to be the first on the market and to establish

one’s own products as de facto standards are very high. Faster and less thorough

testing procedures allow for a shorter time-to-market, thus leading to a

competitive advantage. In network economics, controlling standards is of greater

importance to a commercial success than to deliver a better product.

Asymmetric information between producers and buyers within the software

market makes another contribution to the problem of flawed and insecure

software. It cannot be the business interest of a software producer to provide

information about weaknesses of his product to potential customers before they

buy it.

Because reverse engineering is declared an unlawful activity by copyright laws,

there cannot be a provable serious source of quality information to serve as a basis

for rational consumer choice. A competition for quality is disabled as long as

reverse engineering software distributed in binary form is deemed unlawful.

2 For the consequences see, e.g. (Kaner 1998).

4

Certification of products, often proposed as a solution to this dilemma, won’t

work if neither the producer of the software nor the certification authority will

have to bear the costs of ill-certified software. Instead, as security expert Ross

Anderson explained (Anderson 2001), the certification process probably will

beand in reality quite often isadapted to the needs of the software producer.

That is the simple economic rationale behind commercial software development

and its built-in preference for insecure software: It is a perfectly rational behavior

for a commercial software producer to distribute unsafe products as long as it is to

his advantage.

Legal obstacles to better software quality and security

From a legal point of view, software is treated as some kind of literary work.

(Raskind 1998) There is no special liability law to be applied in cases involving

mass market software.

Instead of the development of a sui generis law for software that would have

equilibrated the interests of software producers, software users and of the public

of course, existing laws have been extended in order to cover the demands of

software producers solely.

Copyright law protection for software contains a broad banwith only a few

exeptionson reverse engineering. It is unlawful to reconstruct a human readable

form from the binary code. Reverse engineering is made illegal even for most

honest purposes.2 There is no exception for security inspection and/or

enhancement.

The prohibition of reverse engineering furthers the above mentioned market

intransparency. Thus it hinders the development of a market for software security.

3 See, e.g. Finjan Software, Inc. (San Jose, CA), U.S. Pat. 6,167,520 (26 Dec 2000): System

and method for protecting a client during runtime from hostile downloadables; McAfee.com

Corporation (Santa Clara, CA), U.S. Pat. 6,266,774 (24 Jul 2001): Method and system for

securing, managing or optimizing a personal computer.

5

The second important legal hindrance to the enhancement of quality and security

of software products consists in the increasing patent protection for software.

Software can in part be protected by patenting its technology. Patent laws give the

patent holders the exclusive rights to the patented technologyin every possible

implementationand do not allow the offering of compatible technology without

a license. Patent protection often bars competitors from the market if core parts of

a standard technology are protected by patents. Since network externalities have

great influence, the incentives are high, not to license technology to competitors.

Patent protection for software has implications for IT security.

Because of the absolute legal protection that patent law provides, compatible

technology from a competitor may be blocked. A faulty implementation of a

certain technology may well become the single one solution available on the

market.

Secure technology itself may be patented. In such cases, no software producer is

allowed to include functional equivalent technology within his products without

license. Thereby the fast spreading of secure technology can be hindered.

Business models with a core idea of securing systems may be patented. Actually,

it already happened.3 In effect, one has to acquire a license in order to make

systems safe or to fix security flaws in a certain way − regardless of a possible

emergency. Rarely applied, compulsory licensing rules provided hitherto no

solution.

4 Similarly (Pipkin 2000, xx).

6

We can conlude that the more software technology is protected by patents, the

higher is the probability for certain faulty software products to become very

common. Until today, there is no legislative answer to the mentioned problems.

Risk management

In view of the error-prone development process which leads to faulty software,

which in turn leads to insecure systems, it is time to ask for an adequate risk

management strategy to cover the public interest in system security.

Such a risk management strategy has to be constructed in a manner that it will

reduce the risks coupled with the use of software in the long term. That means to

reduce the number of errors in the code, to reduce the scale of security

weaknesses and to minimize the harmful consequences of security breaches.

The best method we know so far to enhance the quality of software is the

deployment of well tested standard components combined with a process of peer

review by experts. The creation of more secure software requires incremental

improvement in order to fix detected weaknesses. (Sommerville 2001: 566) Peer

review plays a crucial role in this quality management process.

The delay between the detection of an error or security weakness and the

availability of a service pack depends solely on the suppliers subjective estimation

of its relevance. From a security point of view, the delay should be kept as short

as possible. Even better if the user could do the repair on his own.

Security needs to be thought of as a «process». «And if we’re ever going to make

our digital systems secure, we’re going to have to start building processes.»

(Schneier 2000: xii)4 And that process-building must be kept alive over the time a

software product stays in use. The security process must again and again be

adapted to reflect changing environmental conditions and experiences.

Environmental conditions are nowhere the same. We have to realize that there

5 I will use the term open source in a generic manner and not differentiate between free software

and open source software. The interest is directed to the technical and legal possibilities and from

this point of view both, free and open source software provide similar features.

7

simply cannot be a one-fits-all solution. Security is to be tailor-made to reach the

required level of efficiency.

To the current knowledge, there is only one development process that can fulfill

the mentioned quality requirements and at the same time supply the basis of a

security process within a risk management strategy. This is the open source

software development model.5

Since the source code of the programs is publicly available, there is no need for

reverse engineering. To be able to understand how the program works one can

simply read the source. This alone is not the solution to reliability and security

problems. Rather it is the decisive technologic prerequisite a number of security

experts demands in order to make secure systems available. (Schneier 2000: 343f;

Pfitzmann et al. 2000)

Availability of source code enables users at home and at work to fix security

weaknesses as soon as they become aware of it.

Open source software spurs competition. The use of open standards removes the

bias in favor of a dominant market player with proprietary technology. Other

competitors with more reliable products get a chance and the unwelcome results

of network externalities can be minimized. And the market transparency grows. A

producer-independent certification process could be established and meet the

users’ needs.

Last but not least, a huge amount of open source, well scrutinized code is

available without royalty fees. Secure software and services can be developed out

of it at low costs.

Given all these prospects, open source software shows reasonable qualities to be

preferred as a development and distribution model in comparison to proprietory

8

ones. But this model is in danger. The goldrush in software patenting may well

stall what looks so promising. There are serious problems connected to the patent

protection for software.

Patent protection prevents the use of patented technology within open source

software without the appropriate license. Put simply, patent law favors those who

try to hide patent infringing code through binary distribution.

The average open source programmer without support from a patent department

as large software producers have it at their hands, is not in the position to avoid

writing code that possibly may infringe someone else’s patent claims. He is

financially not in the position to defend against patent litigation, even if the

complaints are unreasonable.

To summarize: The open source software development process encourages the use

of the best software engineering principles we know today. High quality and

security of software and computer systems can thereby be achieved. Open Source

software encourages the competition for better security. However, software

patents present a real threat for the open source software development and

distribution model. Unrestricted possibilities of enforcing patent against open

source devolopers could mean to put IT security at stake.

Perhaps, the proposal of a "source code privilege", may present a way to a

solution. (Lutterbeck et al. 2000)

The core proposal suggests:

«The use of the source codes of computer programs must be granted

privileged status under patent law. The creation, offering, marketing,

possession, or introduction of the source code of a computer program

in its various forms must be exempted from patent protection (source

code privilege).» (Recommendation PP-1).

9

References

Anderson, Ross: Why Information Security is Hard − An Economic Perspective, 2001, on the

internet: http://www.cl.cam.ac.uk/ftp/users/rja14/econ.pdf [28 Aug 2001].

Floyd, Christiane: Softwaretechnik [Software engineering], 14.2.1 Eigenschaften von Software

[Properties of software], in P. Rechenberg, G. Pomberger: Informatik−Handbuch, Carl

Hanser Verlag, München, Wien, 1997.

Kaner, Cem: The Impossibility of Complete Testing, in SOFTWARE QA, Volume 4, #4, p. 28,

1997, on the internet: http://www.kaner.com/articles.html [28 Aug 2001].

Kaner, Cem: The Problem of Reverse Engineering, in SOFTWARE QA, Vol. 5, #5, 1998, on

the internet: http://www.kaner.com/articles.html [28 Aug 2001].

Litman, Jessica: Digital Copyright , Prometheus Books, Amherst, NY, 2001.

Lutterbeck, Bernd; Horns, Axel H.; Gehring, Robert A.: Sicherheit in der

Informationstechnologie und Patentschutz für Softwareprodukte - ein

Widerspruch ? (Security in Information Technology and Patent Protection for

Software Products: A Contradiction?, Short Expertise Commissioned by the Federal

Ministry of Economics and Technology), Berlin, Dec 2000, on the internet:

http://www.sicherheit-im-internet.de/download/Kurzgutachten-Software-patente.pdf [28

Aug 2001].

Pfitzmann, Andreas; Köhntopp, Kristian; Köhntopp, Marit: Sicherheit durch Open Source?

Chancen und Grenzen, in Datenschutz und Datensicherheit 9/2000, pp 508-513.

Pipkin, Donald L.: Information Security , Prentice Hall PTR, Upper Saddle River, NJ, 2000.

Raskind, Leo J.: Copyright , in The New Palgrave Dictionary of Economics and The Law, Vol. 3,

p. 478ff, Macmillan Reference Ltd., London, 1998.

Schneier, Bruce: Secrets and Lies. Digital security in a networked world, John Wiley & Sons,

Inc., New York, 2000.

Shapiro, Carl; Varian, Hal R.: Information rules. A strategic guide to the network economy,

Harvard Business School Press, Boston, MA, 1999.

Sommerville, Ian: Software Engineering, 6th edition (german translation), Pearson Studium,

2001.

